师资队伍

王博岳

职称职务:教授,博士生导师

E-mail:wby@bjut.edu.cn

通讯地址:2138cc太阳集团理科楼北京人工智能研究院M812

基本信息

王博岳,教授,博士研究生导师,硕士研究生导师,2138CC太阳集团、多媒体与智能软件技术北京市重点实验室、北京人工智能研究院教师。2018年获2138cc太阳集团“优秀博士学位论文奖”和北京市教委“优秀毕业生”,2020年获“中国图学学会优秀博士学位论文奖”(全国一级学会优博),2021年入选“2138cc太阳集团高端人才队伍建设计划”,2022年入选“北京市科协青年人才托举工程”,入选2023年度“2138cc太阳集团新锐青年学者培育团队支持计划”。以第一主编出版“战略新兴领域‘十四五’高等教育系列教材”《数据挖掘》。

一、教育背景

2012.9-2018.6,2138cc太阳集团,计算机科学与技术专业,博士学位

2016.2-2017.2,澳大利亚查尔斯特大学,中国留学基金委联合培养博士项目

2008.9-2012.7,河北工业大学,计算机科学与技术专业,学士学位

二、工作经历

2018.7-2021.1, 2138cc太阳集团,控制科学与工程专业,师资博士后

2019.7-2021.6,2138cc太阳集团信息学部、北京人工智能研究院,讲师

2021.7-2025.7,2138cc太阳集团信息学部、北京人工智能研究院,副教授

2025.7-至今,2138CC太阳集团、北京人工智能研究院,教授

三、近三年主要研究方向

(1)多模态假新闻/谣言检测

围绕复杂社交媒体环境中的微博、短视频虚假信息治理,研究聚焦于多模态假新闻检测与内容可信度评估。主要从“模态异质性—决策可解释性—复杂场景鲁棒性”三方面展开:通过模态感知学习与决定性因子挖掘,显式捕捉图像、文本中对判断最具贡献的细粒度线索,实现从“图文匹配”向“关键模态证据发现”的升级;进一步构建层次化信念规则库,在多模态特征之上建立推理路径,提升可信度评估的可解释性;建立大小模型协同机制,发挥大模型寻找线索、小模型做决策的优势。

(2)知识驱动的视觉问答(含偏置识别与反事实去偏)

在视觉问答(VQA)领域,致力于研究跨模态语义对齐、多源偏置消除以及知识引导推理三个方向:首先,通过构建更精细的“问题片段—视觉区域”对齐机制,缩小跨模态语义鸿沟,有效避免模型依赖语言模板作答;其次,在反事实双偏置学习框架中同时处理语言偏置与多模态融合偏置,通过生成反事实样本和双通路对抗,显著提升模型在难例、长尾和真实场景中的稳健性;此外,在知识驱动VQA中,结合实体识别、知识图谱结构与大型语言模型,对问题进行实体增强与语义重写,并构建翻译式多模态嵌入空间,实现“图像—语言—知识”三方统一推理。相关系列工作形成了完整的VQA研究链条,涵盖可解释性、去偏与知识增强等关键主题。

(3)多模态与属性图聚类及深度表征学习

在图学习与聚类方向,聚焦多模态图以及混合模态数据的结构化表征与鲁棒聚类。针对节点属性与图结构双重异质性,提出邻域双一致性约束与跨注意力融合机制,实现语义与拓扑的协同表达;针对多模态/缺失模态场景,构建生成式结构匹配框架,通过补全缺失模态、对齐模态间结构差异,有效解决“非配对数据+结构不一致”的聚类难题;同时,通过跨注意力增强的图卷积网络,提升噪声环境下的簇结构清晰度。该方向成果为多模态社交媒体分析、VQA 实体聚合以及知识图谱实体表征提供了底层理论和方法支持。

4)时序与多模态知识图谱补全及LLM融合

在知识图谱研究中,长期关注“图结构—时间演化—多模态语义”三者的统一建模。提出多曲率几何空间用于时序知识图谱嵌入,通过共享与特定子空间自动适配复杂关系结构和时间模式,提高长时间跨度下的推理能力;进一步探索多模态实体表示,通过分离共享语义与模态特有语义,解决文本—图像实体描述不一致带来的语义偏差;在最新工作中,将大型语言模型(LLM)引入 TKG 补全,将图谱补全转化为结构化文本生成与三元组映射的联合任务,实现符号知识结构与大模型语义能力的互补增强。该方向形成了从几何建模、多模态融合到 LLM 推理的系统研究框架,为高质量知识补全提供了新范式。

小组公众号:跨媒体智能小组(微信号:gh_c889c9c5df1c

小组成员目前包括博士5硕士10,氛围融洽。现有多台A800/A6000/4090/3090GPU工作站,丰富计算资源可供学生完成学习和科研任务,欢迎数学或编程基础较好且有志于科研的同学报考本方向硕士研究生、博士研究生

四、主要承担科研项目

1.国家重点研发计划,面向社会治理案(事)件要素关联的多模态数据语义建模技术研究,2023-2026,课题负责人,150万;

2.国家自然科学基金重大研究计划培育项目,数据知识双驱动的社会媒体短视频内容推理分析,2024-2026,负责人,89.2万;

3.国家自然科学基金面上项目,流形空间多图结构学习方法及其跨模态应用研究,2023-2026,负责人,70.9万;

4.国家自然科学基金青年项目,流形空间不完整多视图像视频的聚类,2020-2022,负责人,32.4万;

5.北京市自然科学基金青年项目,多视视频数据的自动编码机聚类模型,2020-2021,负责人,10万;

6.北京市教委科研计划科技一般项目,基于乘积流形表示的部分多视聚类研究,2020-2022,负责人,15万;

7.中国博士后科学基金面上项目一等资助,基于多视视频数据的深度子空间聚类模型,2018-2020,负责人,8万;

8.北京市博士后科研活动经费资助,面向不完整多视视频的多流形聚类模型,2019-2020,负责人,5万。

五、代表性成果

以第一作者或通讯作者发表IEEE/ACM Trans学术论文30余篇(其中高被引论文2篇),包括SCI期刊IEEE TNNLS、IEEETCYB、IEEE TCSVT、IEEE TMM、IEEE TKDE、IEEE TBD、IEEETITS、ACM TKDD和顶级国际会议AAAI、IJCAI、WWW等。

2025

[31] Xiaxia He, Boyue Wang, Junbin Gao, Yongli Hu, Baocai Yin. MFC: Mixed Federated Clustering based on Cross-modal Feature Decoupling.KDD (CCF-A), 2025.

[30] Qingqing Gao, Tengfei Liu, Xiaoyan Li, Xiaodan Zhang, Zhongfan Sun,Boyue Wang*, Zhaohui Liu*, Baocai Yin. Emergency Events Traffic Flow Forecasting Using Text-Prompt-Guided Multimodal Large Language Models.AAAI(CCF-A), 2025.

[29]LanZhao,Boyue Wang*, Junbin Gao, Xiaoyan Li, Yongli Hu, Baocai Yin. Multi-modal Entity in One Word: Aligning Multi-level Semantics for Multi-modal Knowledge Graph Completion.IEEE Transactions on Big Data, 2025.

[28]Heng Liu,Boyue Wang*, Xiaoyan Li, Yanfeng Sun, Yongli Hu, Baocai Yin. ICQ-TransE: LLM-Enhanced Image-Caption-Question Translating Embeddings for Knowledge-Based Visual Question Answering.IEEE Transactions onArtificialIntelligence, 2025.

[27]Boyue Wang,XiaoqianJu, Junbin Gao, Xiaoyan Li, Yongli Hu, Baocai Yin. Counterfactual Dual-Bias VQA: A Multi-modality Debias Learning for Robust Visual Question Answering.IEEE Transactions on Neural Networks and Learning Systems, 2025.

2024

[26]Heng Liu,Boyue Wang*, Yanfeng Sun, Junbin Gao, Xiaoyan Li, Yongli Hu, Baocai Yin. Multi-granularity Feature Interaction and Multi-region Selection based Triplet Visual Question Answering.IEEE Transactions on Big Data, 2024.

[25]Boyue Wang, Guangchao Wu, Xiaoyan Li, Junbin Gao, Yongli Hu, Baocai Yin. Modality Perception Learning based Determinative Factor Discovery for Multi-modal Fake News Detection.IEEE Transactions on Neural Networks and Learning Systems, 2024.

[24]Xiaxia He,Boyue Wang*, Junbin Gao,QianqianWang, Yongli Hu, Baocai Yin. Mixed-modality Clustering via Generative Graph Structure Matching.IEEE Transactions on Knowledge and Data Engineering,2024.

[23]Jiapu Wang, Zheng Cui,Boyue Wang*, Shirui Pan, Junbin Gao, Baocai Yin, Wen Gao. IME: Integrating Multi-curvature Shared and Specific Embedding for Temporal Knowledge Graph Completion.ACM on Web Conference, 2024.

[22]Jiapu Wang,Boyue Wang*, Junbin Gao, Shirui Pan, Tengfei Liu, Baocai Yin, Wen Gao. MADE: Multicurvature Adaptive Embedding for Temporal Knowledge Graph Completion.IEEE Transactions on Cybernetics, 2024.

[21]Boyue Wang, Yujian Ma, Xiaoyan Li, Junbin Gao, Yongli Hu, Baocai Yin. Bridging the Cross-Modality Semantic Gap in Visual Question Answering.IEEE Transactions on Neural Networks and Learning Systems, 2024.

2023

[20]Jiapu Wang,Boyue Wang*, Junbin Gao, Simin Hu, Yongli Hu, Baocai Yin. Multi-Level Interaction Based Knowledge Graph Completion.IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023.(高被引)

[19]Xiaxia He,Boyue Wang*, Ruikun Li, Junbin Gao, Yongli Hu, Guangyu Huo, Baocai Yin. Graph Structure Learning Layer and its Graph Convolution Clustering Application.NeuralNetworks,2023.

[18]Jiapu Wang,Boyue Wang*, Junbin Gao, Xiaoyan Li, Yongli Hu, Baocai Yin. QDN: A Quadruplet Distributor Network for Temporal Knowledge Graph Completion.IEEE Transactions on Neural Networks and Learning Systems, 2023.(IF:10.451, SCI中科院一区)

[17]Jiapu Wang,Boyue Wang*, Junbin Gao, Xiaoyan Li, Yongli Hu, Baocai Yin. TDN: Triplet Distributor Network for Knowledge Graph Completion.IEEE Transactions on Knowledge and Data Engineering, 2023.

[16]Jiapu Wang,Boyue Wang*, Junbin Gao, Yongli Hu, Baocai Yin. Multi-Concept Representation Learning for Knowledge Graph Completion.ACM Transactions on Knowledge Discovery from Data, 2023.

[16]Xiaxia He,Boyue Wang*, Junbin Gao, Yongli Hu, Baocai Yin. Parallelly adaptive graph convolutional clustering model.IEEE Transactions on Neural Networks and Learning Systems,2023. (IF:10.451, SCI中科院一区)

2022

[15]Guangyu Huo, Yong Zhang,Boyue Wang*, Yongli Hu, Baocai Yin. Hierarchical Spatio–Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting.IEEE Transactions on Intelligent Transportation Systems, 2022.(IF:6.492, SCI中科院一区)

2021

[14]Guangyu Huo, Yong Zhang,Boyue Wang*, Yongli Hu, Baocai Yin. Text-to-Traffic Generative Adversarial Network for Traffic Situation Generation.IEEE Transactions on Intelligent Transportation Systems, 2021.(IF:6.492, SCI中科院一区)

[13]Guangyu Huo, Yong Zhang, Junbin Gao,Boyue Wang*, Yongli Hu, Baocai Yin. CaEGCN: Cross-Attention Fusion based Enhanced Graph Convolutional Network for Clustering.IEEE Transactions on Knowledge and Data Engineering, 2021.(IF:6.977, SCI中科院二区)

[12]Ye Yuan, Yong Zhang,Boyue Wang, Yongli Hu, and Baocai Yin. STGAN: Spatio-Temporal Generative Adversarial Network for Traffic Data Imputation.IEEE Transactions on Big Data,2023.

[11]Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, Fujiao Ju, Baocai Yin. Adaptive Fusion of Heterogeneous Manifolds for Subspace Clustering.IEEE Transactions on Neural Networks and Learning Systems,2021. (IF:10.451, SCI中科院一区)

[10]Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, Fujiao Ju, Baocai Yin. Learning Adaptive Neighborhood Graph on Grassmann Manifolds for Video/Image-Set Subspace Clustering.IEEE Transactions on Multimedia,2021. (IF:6.051, SCI中科院一区)

[9]Yongli Hu, Zuolong Song,Boyue Wang*, Junbin Gao, Yanfeng Sun, Baocai Yin.AKM3C: Adaptive K-Multiple-Means for Multi-view Clustering.IEEE Transactions on Circuits and Systems for Video Technology, 2021.(IF:4.133, SCI中科院二区)

2018年以前

[8]Boyue Wang, Yongli Hu, Junbin Gao, Muhammad Ali, David Tien, Yanfeng Sun, Baocai Yin. Low Rank Representation on SPD Matrices with Log-Euclidean Metric.Pattern Recognition, 2018.(IF:7.196, SCI中科院一区)

[7]Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin. Localized LRR on Grassmann Manifold: An Extrinsic View.IEEE Transactions on Circuits and Systems for Video Technology, 2018.(IF:4.133, SCI中科院二区)

[6]Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin. Partial Sum Minimization of Singular Values Representation on Grassmann Manifold.ACM Transactions on Knowledge Discovery from Data, 2018.(IF:1.974, SCI中科院三区)

[5]Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin. Laplacian LRR on Product Grassmann Manifolds for Human Activity Clustering in Multi-camera Video Surveillance.IEEE Transactions on Circuits and Systems for Video Technology, 2017.(IF:4.133, SCI中科院二区)

[4]Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin. Product Grassmann Manifold Representation and its LRR Models. InAmerican Association for Artificial Intelligence (AAAI), 2016. (CCF-A)

[3]Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, Muhammad Ali, Haoran Chen and Baocai Yin. Locality Preserving Projections for Grassmann Manifolds. InInternational Joint Conference on Artificial Intelligence (IJCAI), 2017. (CCF-A)

[2]Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun and Baocai Yin. Cascaded Low Rank and Sparse Representation on Grassmann Manifolds. InInternational Joint Conference on Artificial Intelligence (IJCAI), 2018. (CCF-A)

[1]Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin. Low rank representation on Grassmann manifolds. InAsian Conference on Computer Vision (ACCV), 2014. (CCF-C)

六、毕业硕士

2025 句晓千(优秀硕士毕业论文),吴广超(优秀硕士毕业论文)

2024马宇健(优秀硕士毕业论文),胡思敏

2023王一凡(优秀硕士毕业论文)

协助培养毕业硕士:

2022宋作龙(优秀硕士毕业论文),张朝辉

2021罗萃萃

七、联系方式

E-mail:wby@bjut.edu.cn

地址:2138cc太阳集团理科楼北京人工智能研究院M812